
High Available Data Placement in Large-scale Distributed
Storage System

Myat Pwint Phyu
University of Computer Studies, Yangon

myatpwint.ucsy@gmail.com

 Abstract

 Today’s storage systems have a great
challenge for the long-term storage of massive
amounts of unstructured data. Availability and
reliability is the properties of the most storage
system. In this paper, the data distribution in
large scale distributed storage system have been
presented. To provide high data availability,
replicas will be placed with Chord-based
replication method with extra weight metric.

1. Introduction

 As storage system grows larger and more
complex, the traditional file systems cannot
satisfy the large work load. Many file systems
have emerged focusing on specialized
requirements such as data sharing, remote file
access, distributed file access, parallel files
access, high performance computing, archiving
etc.. Moreover, storing and managing the growth
of unstructured data is one of the great
challenges.
 Data availability is one of the most
important factors in a distributed environment. In
the first part of the figure 1, (100/6) ~17% of the
files will distribute in the file system onto each
server. Any single file will be stored on a single
storage server. It cannot stand any failure. In the
second part, (100/3) ~33% of the files will
distribute over mirror in the file system onto each
mirror pair. Any single file will be stored on two
storage servers. Complete replication or parity
scheme are used to achieve this. Replication is
the simplest redundancy scheme. It forces
extremely high bandwidth and storage overhead.

 With an erasure-coded redundancy scheme,
each object is divided into m fragments and
recoded into n fragments, where n>m. So, the
effective redundancy factor is k=n/m. With
erasure codes, the original object can be
reconstructed from any m fragments.

Figure 1. Distribution vs. replication

 In this paper, we will discuss how replicas are
placed in large scale distributed storage system.
We will adjust access frequency and storage
capacity using Chord mechanism to achieve
efficient scalability, availability and cost
reduction.
 The rest of this paper is organized as follows.
Section 2 shows the related works of the system.
Section 3 explains the large scale storage system
and Section 4 introduces the proposed system.
Then we conclude the paper with future work in
Section 5.

mirror mirror mirror

Distribute (RAID 10)

Distribute (RAID 0)

2. Related work

 In this section, we will present some of the
recent popular large scale file systems and the
strategies for the data availability.
 GPFS (General Parallel File System) [6] is a
high performance shared-disk clustered file
system developed by IBM. Files are divided into
small blocks (less than 1MB) and blocks are
distributed across the cluster. It can support
RAID replicated or file system node replicated
using a round-robin fashion.
 Lustre [10] is a massively parallel distributed
file system owned by Oracle. It is OSD based
and open source storage system. It can support
data rebalance but no replication. Bad metadata
performance can only be achieved for a large
number of small files. It is difficult to remove
and add OSTs elastically.
 GlusterFS [11] is a scale out file system for
Network Attached Storage (NAS). It is a
clustered file system for storing unstructured
data. It has no bottlenecks by eliminating
metadata servers. It uses an index to look up
files, employing elastic hash algorithm to find a
unique identifier for each file. It can provide
scalability by linearly scales to hundreds of
petabytes. It can get high availability with data
mirroring and real time self healing. Gluster only
provides redundancy at the server level, not at
the individual disk level.
Google File System (GFS) [1] and Ceph [7] also
use redundant data on different storage nodes to
recover from drive failures. Ceph uses a hash-
based distribution scheme, and its object servers
propagate replicas to each other.
 In the Panasas file system [9], the clustered
design of the storage system and the use of
client-driven RAID provide scalable
performance to many concurrent file system
clients through parallel access to file data that is
striped across OSD storage nodes.
 RUSH [2, 3] and CRUSH [5] are two
algorithms for online placement and
reorganization of replicated data. They are
probabilistically optimal in distributing data
evenly and minimizing data movement when
new storage is added to the system. But they
depend on the existence of a high-quality random

function, which is difficult to generate.
 A new approach scaling RAID to fulfill the
three requirements: uniform data distribution,
minimal data migration, fast data addressing.
FastScale [8] uses a new and elastic addressing
function which moves only enough data blocks
from old disks to fill an appropriate fraction of
new disks for the first two requirements. There is
no data migration between the old disks.
FastScale accesses multiple physically
successive blocks via a single I/O and records
data migration lazily to minimize the number of
metadata writes without compromising data
consistency. FastScale gives a solution only for
RAID 0 and it may also be possible for RAID 10
and RAID 01.

3. Large scale shared storage system

 The storage system can be classified into
three natures. Block storage devices are assumed
to have limited intelligence and will read/write
whatever is requested. Metadata server has to
manage each individual block – overhead
quickly mounts up for large number of blocks.
For file-based nature, data is striped as files
across multiple file servers. It is performed well
under many workloads. When the system and the
workload scale up, bottleneck may be occurred.
In object-based storage, files are broken into
smaller chunks called objects. It is identified by
unique numbers. Storage system can scale in
performance and capacity. Object-based storage
is emerging now as another alternative to storing
long term unstructured data. It is attractive
because of its massive scalability and shared
tenancy features, especially in comparison to
ordinary file- or block-based storage.
 There are two approaches to share data
storage. Storage Area Network (SAN)
communicates with applications using lower-
level protocols, which offer fast performance, but
little in the way of intelligent manageability. It
identifies data by block number. Network
Attached Storage (NAS) identifies information
by file type. It utilizes standard protocols such as
Network File System (NFS) so data can be stored
and accessed more intelligently. However, there
may be performance latency trade-off for gaining

that intelligence. It can offer improved
manageability on a small scale and suffer
performance and management as the volume of
file data grows. This can lead inability to scale.

Figure 2. Architecture of the large scale

shared storage system

 By scale up technology, increasing the
input/output size and storage capacity of the
NAS device as data needs grow. But this has
several disadvantages. One is that there may be
significant cost for replacing a device with only
an incremental increase in capacity. Another is
that a single point of failure may still affect. A
scale-out design is only limited by the software
that combines the many inexpensive servers into
one large virtual server. The architecture of large
scale shared storage system is shown in figure 2.

4. The proposed system

 For a distributed storage system focusing data
availability, how to implement a redundancy
strategy, where to replicate the data and when
and how to repair a lost replica must be
considered. Generally, data availability increases
along with the increase of replica number. But,
adding more replicas will not improve the data
availability when the replica number reaches a
certain point. To maintain minimum replica
number ensuring the availability, we will take
into account some factors such as access
frequency and the node’s storage capacity and

adjust them efficiently. Then we will use the
Chord DHT mechanism to place the replicas.

4.1. Chord-based data placement

 The use of distributed hash tables has been a
natural choice to achieve the scalability goal.
Chord DHT protocol [4] provides support for
just one operation: given a key, it maps the key
onto a node. Node keys are arranged in a circle
called Chord ring. The circle cannot have more
than nodes. Consistent hash function assigns
each node and key an m-bit identifier. SHA-1 is
used as a based hash function. As shown in
figure 3, key is assigned to the first node,
successor node of the key , whose identifier is
equal to or follows in the identifier space. It is
denoted as . To speed up the
lookups, Chord maintains additional routing
information which is called finger table. The
entry in the table at node contains the identity
of the first node s that succeeds by at least

 on the identifier circle.
 The weight-based data distribution
mechanism is illustrated in figure 3.

Figure 3. Data distribution algorithm

 In the proposed method, nodes are organized
as the form of ring structure. Data objects are
distributed using the Chord mechanism. The
conventional Chord mechanism is enhanced by a
metric called node’s weight. This is determined

m2

k
k

k
)(ksuccessor

thi
n

n
12 -n

To find the successor node of an identifier id,
n.find_successor(id)
 while (id (n, n.successor))
 // to find the closet finger proceeding id
 for i = 1 to m
 if (finger[i].node.weight > max_w)
 max_w = finger[i].node.weight
 if (finger[i].node (n,id))
 n = finger[i].node
 return n

Ï

Î

by counting the access frequency and adjusting
the node’s storage capacity. It can also be an aid
to determine the addition and deletion of replica
data. Each node in the Chord ring must maintain
a finger table with extra metric. The metric is not
constant and it needs updating at the stabilization
routine of the Chord.

Figure 4. Chord-based data distribution
mechanism

 Figure 4 shows the data distribution
mechanism using Chord. When a request comes,
Node N8 is randomly chosen for the document of
hashed key “52”. It looks up in its finger table
and forwards the request to the node having the
greatest identifier that is less than or equal to
“52”. It also takes the greatest weight throughout
the process. If the process finds the successor
node (node N55), it must decide the target node
according to the largest weight among the close
nodes (node N21).

4.2. Replica building and rebuilding

 Based on each node’s weight, Chord adapts
efficiently as nodes join and leave the system and

only an fraction of the keys are moved

to a different location. When a node n join the
network, certain keys previously assigned to n’s
successor become assigned to n and when node n
leaves, all of its assigned keys are just reassigned
to n’s successor.

4.3. Theoretical advantages

 To the best of our knowledge, the proposed
Chord structure-based data distribution is the
efficient one. There are some properties that are
offered by the proposed system.
1. The chord mechanism takes the placement

of files and optimizes the data distribution as
it maintains least requirements for the
distribution of data. Since each node holds
the finger tables at the power of two
intervals around the circle, each node can
pass a request at least halfway along the
remaining distance which is O (log N).

2. By consistent hashing approach, the nodes
can maintain load balancing well because all
nodes receive roughly the same number of
keys.

3. Because of the weight-based finger table of
Chord mechanism, the data can be put over
more appropriate node.

5. Conclusions and Future Work

 In this paper, we present the efficient way to
assist the storage management of distributed
storage system. We discuss the chord DHT
approach for the data placement in large scale
distributed storage system. We show that some
theoretical advantages. We will evaluate our
system with various kinds of workloads later.
The system is still in progress and we will
present the system with rich experimental results
at future.

References

[1] S. Ghemawat, H. Gobioff, S. Leung. The Google
File System, In Proceedings of the 19th ACM
Symposium on Operating Systems Principles, 2003,
pp 20-43.
[2] R. J. Honicky and E. L.Miller. A fast algorithm for
online placement and reorganization of replicated data.
In Proceedings of the 17th International Parallel and
Distributed Processing Symposium (IPDPS 2003),
Nice, France, April 2003.
[3] R. J. Honicky and E. L. Miller. Replication under
scalable hashing: A family of algorithms for scalable
decentralized data distribution. In Proceedings of the

)1(NO

18th International Parallel and Distributed Processing
Symposium (IPDPS’04), IEEE. 2004.
[4] L. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A Scalable Peer to Peer
Lookup Service for Internet Applications. In
Proceedings of ACM SIGCOMM 2001, San Diego,
August 2001, pp. 160-177.
[5] S. A.Weil, S. A. Brandt, E. L.Miller, and
C.Maltzahn. CRUSH: Controlled, Scalable,
Decentralized Placement of Replicated Data. In
Proceedings of the International Conference on Super
Computing (SC’06). Tampa Bay, FL. 2006.
[6] F. Schmuck and R. Haskin. GPFS: A Shared-Disk
File System for Large Computing Clusters. In Proc. of
the First Conference on File and Storage
Technologies, 2002.
[7] S. A. Weil, S. A. Brandt, E. Miller, D. Long, C.
Maltzahn, Ceph: A Scalable, High-Performance
Distributed File System, In Proceedings of the 7th
Conference on Operating Systems Design and
Implementation (OSDI ’06), November 2006.
[8] W. Zheng, and G. Zhang, FastScale: Accelerate
RAID Scaling by Minimizing Data Migration, In
Proceedings of the 9th USENIX Conference on File
and Storage Technologies (FAST’2011), February
2011.
[9] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B.
Mueller, J. Small, J. Zelenka, B. Zhou. “Scalable
Performance of the Panasas Parallel File System. In
Proceedings of the USENIX Conference on File and
Storage Technologies (FAST’08), 2008.
[10] Cluster File Systems Inc., Lustre: A scalable
high-performance file system,
www.lustre.org/documentation.html.
[11] Gluster File System, www.gluster.org.

